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Abstract. In Gutzwiller’s formulation of the quantum periodic Toda lattice, quantization
conditions are expressed in terms of Floquet’s characteristic exponents which are equal to
the zeros of a Hill-type determinant. We have derived an integral equation for the density
distribution of those zeros for the ground state in the large-N limit. The large-N asymptotic
expansions of the conserved quantities given by this density distribution are found to be fairly
good approximations to the exact values. We have also carried out the semiclassical quantization
by theEBK formulation and the semiclassical eigenvalues turned out to be very close to the exact
values.

1. Introduction

The Toda lattice is a one-dimensional dynamical system of equal masses connected by
nonlinear springs of exponential type between pairs of nearest neighbours [1]. It is one
of the most popular models of completely integrable systems [2] and has been studied
extensively over two decades. The importance of the Toda lattice consists in its complete
integrability, i.e. the classical orbit stays on the invariant torus in the phase space, while
the quantum mechanical spectrum and the eigenfunction are characterized by as many
quantum numbers as degrees of freedom. There are two kinds of lattices, periodic or
open, depending on whether the first and the last masses are coupled or not. In classical
mechanics, Flaschka [3] has solved an initial-value problem of the infinite open Toda lattice
by the inverse scattering method, while the solution of the periodic Toda lattice is given
by the Jacobi inversion method by Kac and Moerbeke [4] and Date and Tanaka [5]. In
quantum mechanics, the infinite open Toda lattice was investigated by Sutherland [6] as a
limiting case of the 1/ sinh2(x) potential. The quantum version of the periodic Toda lattice
was first studied by Gutzwiller [7]. He has developed a formulation which is parallel to
the method of [4]. His method is to expand the eigenfunction of theN -particle periodic
Toda lattice in terms of the product of the(N − 1)-particle open Toda lattice and a free
particle. Meanwhile, Sklyanin [8] has combined the quantum spectral transform method
(QSTM) (R-matrix formalism) and Gutzwiller’s formulation and derived an equation for the
spectrum of the quantum Toda lattice. The first numerical calculation based on Gutzwiller’s
formulation was reported by Fowler and Frahm [9], while we have directly carried out the
diagonalization of the Hamiltonian in terms of orthogonal bases [10, 11] and similar work
was also reported by Isolaet al [12]. In [11], we have shown that the Hamiltonian has a
symmetry of the dihedral groupDN and classified the eigenstates according to the irreducible
representations of theDN group. It is also found that the eigenvalues satisfy Gutzwiller’s
quantization conditions and the semiclassical quantization is a good approximation.

0305-4470/96/051089+12$19.50c© 1996 IOP Publishing Ltd 1089



1090 A Matsuyama

The difficulty of the quantum Toda lattice is that no explicit formulae are known for the
spectrum and the eigenfunction. This situation contrasts with other well known integrable
systems like a Bose gas withδ-function interaction [13] or the Calogero–Sutherland model
(CSM) [14]. For example, the eigenfunction of theCSM can be expressed in terms of a
Jastrow-type wavefunction which is the product of two-body wavefunctions and its energy
spectrum is given by the asymptotic Bethe ansatz. On the other hand, in the case of the
Toda lattice, one is forced to carry out numerical calculations which becomes a formidable
task for a large number of particles. This is one of the reasons why the quantum Toda lattice
has not been studied very much so far. In order to overcome this unsatisfactory situation,
we will handle the problem in the opposite direction, i.e. we will firstly solve the problem
in the large-N limit and then obtain the exact spectrum of the finite-N system by making
use of an asymptotic expansion. The aim of this paper is to derive an integral equation
from Gutzwiller’s formulation in the large-N limit and show how the exact spectra of the
conserved quantities can be practically calculated by employing the solution of this integral
equation.

In section 2, we will briefly review Gutzwiller’s quantization conditions and, in section 3,
an integral equation is derived for the ground state in the large-N limit by employing
Gutzwiller’s quantization conditions. Semiclassical quantization will be also carried out
by the EBK formulation in section 4. Numerical results will be presented in section 5 and
section 6 is devoted to a summary.

2. Gutzwiller’s quantization conditions

The Hamiltonian of the periodicN -particle Toda lattice is given in a dimensionless form as

HToda = 1
2

∑
i

p2
i +

∑
i

exp(qi − qi+1) (1)

where we setqN+1 = q1. The classical equations of motion were shown to be rewritten in
a Lax form by Flaschka [15]

dL

dt
= [B,L] (2)

whereL andB are theN ×N matrices,

L =


b1 a1 aN
a1 b2 a2 0

. . . . . .

. . . . . .

0 aN−2 bN−1 aN−1

aN aN−1 bN

 (3)

B =


0 − a1 aN
a1 0 − a2 0

. . . . . .

. . . . . .

0 aN−2 0 − aN−1

−aN aN−1 0

 (4)

andan = exp((qn − qn+1)/2)/2, bn = pn/2. Therefore the eigenvalues of the matrixL are
constants of motion and thus the coefficients of the characteristic polynomial of the matrix
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L are also constants of motion, which are defined as follows (I is theN × N identity
matrix),

det(2xI − 2L) =
∑
i

Ai(2x)
N−i − 2 (5)

where A0 = 1. The conserved quantitiesAi are in involution with the Hamiltonian,
[H,Ai ] = 0, and also mutually in involution, [Ai,Aj ] = 0. (Note thatH = −A2 in
the CM system.) In quantum mechanics, the Hamiltonian and the conserved quantities are
operators and are given by the canonical quantization, i.e. the momentumpi is replaced
by the operator−ih̄(∂/∂qi). Although the Hamiltonian of the quantum Toda lattice is not
scale-invariant, we set ¯h = 1 in the following arguments.

In [7], Gutzwiller developed a systematic way of constructing simultaneous
eigenfunctions of the operatorsH and Ai for N = 2, 3 and 4 particle lattices. Later,
his method was extended generally for theN -particle periodic Toda lattice by employing
the transfer matrix method of Pasquier and Gaudin [16]. Let us briefly summarize his
algorithm of quantization. Suppose we haveN − 1 real numbers(E,A3, A4, . . . , AN) and
try to examine whether they are simultaneous eigenvalues of the operatorsH andAi .

Firstly we should solve a Hill-type equation1(κ) = detC = 0, whereC is a tridiagonal
infinite matrix

C =



. . .
. . .

. . . 1 ±1
D(κ−1) 0

1
D(κ)

1 ±1
D(κ)

1
D(κ+1) 1 ±1

D(κ+1)

0 1
D(κ+2) 1

. . .

. . .
. . .


(6)

where

D(κ) = κN + EκN−2 − iA3κ
N−3 + A4κ

N−4 + iA5κ
N−5 + · · · + iNAN (7)

where κ is a complex number and the double sign is− (+) for N = odd (even). It
generally hasN different purely imaginary solutionsκi (

∑
i κi = 0) in − 1

2 6 <(κ) 6 1
2.

In the special case ofN = odd andA3 = A5 = · · · = 0, 1(κ) = 0 hasN − 1 solutions,
and κ = 0 should be added to them sinceκ = 0 automatically satisfies the quantization
condition. In the case ofN = 2, the Schr̈odinger equation of the periodic Toda lattice is
the modified Mathieu equation and1(κ) is a well known Hill’s determinant. In practical
calculation, it is useful to rewrite Hill’s determinant as

1(iλ) = riλr
∗
iλ−1 ± r∗

iλriλ+1/{D(iλ)D(iλ+ 1)} (8)

whererκ is defined by the recursion relation

rκ−1 = rκ ± rκ+1/{D(κ)D(κ + 1)} (9)

with the boundary conditionrκ → 1 (<(κ) → ∞). The double sign is+ (−) for N = odd
(even). The solutionrκ can be given explicitly as a determinant of the lower-right semi-
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infinite part of the matrixC, i.e. rκ = detC ′ where

C ′ =


1 ±1

D(κ+1) 0
1

D(κ+2) 1 ±1
D(κ+2)

0 1
D(κ+3) 1

. . .

. . .
. . .

 . (10)

Let κ = iλj (λ1 < λ2 < · · · < λN) be one of the zeros of Hill’s determinant, that is,
Floquet’s characteristic exponent. Then, secondly, Gutzwiller’s quantization conditions are
expressed as

φj =
∑
k

arg
(
0(1 + i(λj − εk))

) − arg(riλj ) = mπ

N
(modπ) (11)

where{iεk} (ε1 < ε2 < · · · < εN) areN different zeros of the polynomialD(κ) (thus the
poles of1(κ)) andφj is a monotonically increasing function ofλj , i.e.φj+1−φj = π(nj+1)
with non-negative integersnj [9]. TheseN−1 non-negative integers(n1, n2, . . . , nN−1) are
quantum numbers. The integerm which is the same for allj characterizes the symmetric
property of the eigenfunction and has a one-to-one correspondence to the irreducible
representations of theDN group [11]. It takes the valuesm = 0,±1,±2, . . . ,±(N − 1)/2
for N = odd andm = 0,±1,±2, . . . ,±(N − 2)/2, N/2 for N = even.

Although Gutzwiller’s algorithm is well defined, practical calculation is very difficult
for a many-body system since one must search simultaneouslyN − 1 eigenvalues
(E,A3, A4, . . . , AN) for given quantum numbers(n1, n2, . . . , nN−1). This becomes a
formidable task for a large number of particles and another way of calculation should
be pursued.

3. Ground state in the large-N limit

Let us consider the ground state of the quantum Toda lattice in the large-N limit. The
ground state has the quantum numbersn1 = n2 = · · · = nN−1 = 0 and the integer value
m = 0 (N/2) for N = odd (even), and it belongs to the irreducible representation of
the A1-symmetry (symmetric state) of theDN group. Therefore the eigenvalues of the
conserved quantitiesAn (n = odd) vanish since the operatorsAn have theA2-symmetry
for n = odd (see [11] for details). Also note that the zeros iλj and the poles iεj come
out in a symmetric way, i.e.λ1 = −λN, λ2 = −λN−1, . . . , ε1 = −εN, ε2 = −εN−1, . . .

(λ(N+1)/2 = ε(N+1)/2 = 0 for N = odd).
In the large-N limit, we will show the following two important properties of Hill’s

determinant.
(i) The determinantriλj of the semi-infinite matrixC ′ approaches 1 and the difference

is O(e−αN) (α > 0).
(ii) The j th pole iεj and zero iλj are very close and the difference is O(e−βN)(β > 0).
The first one, riλj = 1 + O(e−αN), can be understood as follows. From the recursion

relation (9), one can see

riλ = 1 + 1

D(iλ+ 1)D(iλ+ 2)
+ (higher order terms) (12)

where higher order terms decrease faster than the second term atN → ∞. Since
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D(κ) = ∏
j (κ − iεj ),

|D(iλ+ 1)D(iλ+ 2)| =
N∏
j=1

|(iλ− iεj + 1)(iλ− iεj + 2)|

≈ 1N
1 1

N
2 (13)

where ln11 (ln12) is the average of ln|iλ− iεj + 1| (ln |iλ− iεj + 2|) and clearly11 > 1
(12 > 2). Thusriλ ≈ 1 + (1112)

−N (N → ∞). Our numerical calculation up toN = 20
indicates1112 = 5–10.

The second one, iλj = iεj + O(e−βN), is a little involved. Hill’s determinant1(κ) has
poles{iεj − n} (n is an integer,−∞ < n < ∞ ) and the residue iKj at κ = iεj − n can be
calculated

iKj = lim
κ→iεj−n

(κ − iεj + n)1(κ)

= ∓(−i)N−1

{
riεj r

∗
iεj+1

D(iεj − 1)
+

r∗
iεj
riεj+1

D(iεj + 1)

} ∏
k 6=j
(εj − εk)

−1

+ (higher order terms) . (14)

The double sign is− (+) for N = odd (even). SinceD(iεj −1)∗ = (−1)ND(iεj +1), Kj is
a real number. We know thatriεj ≈ 1, riεj+1 ≈ 1 and 1/D(iεj − 1) decreases exponentially
asN → ∞. However, the behaviour of

∏
k 6=j (εj − εk)

−1 cannot be given by this formula.
By making use of the exact calculation, which will be shown in section 5 in detail, it is
found thatεj ’s distribute in a finite region and∏

k 6=j
(εj − εk) ≈ 1N

3 (15)

with 13 = 1.2–2.0. Thus the residue is iKj ≈ O(e−βN) (β > 0) at N → ∞. Since Hill’s
determinant1(κ) has poles{iεj − n} and zeros{iλj − n}, it can be written in a form [16]

1(κ) =
N∏
k=1

sinπ(κ − iλk)

sinπ(κ − iεk)
(16)

and the residue atκ = iεj − n is

iKj = (−1)n
∏N
k=1 sinπ(iεj − iλk)

π
∏N
k 6=j sinπ(iεj − iεk)

. (17)

Since iKj ≈ O(e−βN)(N → ∞) and numerical calculation indicatesλj ≈ εj , one can
conclude that limN→∞ λj = εj and |Kj | ≈ |εj − λj |, thus,εj − λj = O(e−βN).

These two facts, i.e.riλj = 1 + O(e−αN) and iλj = iεj + O(e−βN) atN → ∞, largely
simplify the quantization conditions (11) for the ground state in the large-N limit and it
becomes

φj =
∑
k

arg
(
0(1 + i(εj − εk))

) = 0 (π/2) (modπ) (18)

for N = odd (even). Defining the densityρ(ε) of εj ’s asNρ(εj ) = 1/(εj+1 −εj ), assuming
that εj ’s will condense asN → ∞ and fill continuously an interval [−Q,Q], taking into
account the fact thatφj+1−φj = π for the ground state, one can obtain the integral equation
in the same way as [6],

1

π

∫ Q

−Q
K(x − y)ρ(y) dy = ρ(x) (19)
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with
∫ Q
−Q ρ(x) dx = 1, whereK(x − y) = <ψ(1 + i(x − y)) andψ(z) is the digamma

function, i.e.ψ(z) = 0′(z)/0(z). Equation (19) is the same equation derived by Sklyanin
under some reasonable assumptions [8]. It is also similar to the Bethe ansatz equation of the
open Toda lattice in a box in the thermodynamic limit given by Sutherland [6] and Hader
and Mertens [17]. However, equation (19) is a homogeneous eigenvalue equation which
contrasts with an inhomogeneous integral equation for the open lattice. This difference
comes from the fact that there exists only scattering state for the open lattice, while there
is only bound state for the periodic lattice. Let us define theN th-order polynomialF(x)
such that

F(x) = i−ND(ix)

=
N∏
i=1

(x − εi) =
[N/2]∑
k=0

A2kx
N−2k . (20)

Taking the logarithm of (20), dividing byN and taking the large-N limit, one can get∫ Q

−Q
ln(x − y)ρ(y) dy = ln x + lim

N→∞
1

N
ln(1 + A2x

−2 + A4x
−4 + · · ·) . (21)

By expanding both sides in powers ofx at x → ∞ and comparing the coefficients, the first
three terms are

− 1
2〈ε2〉 = lim

N→∞
1

N
A2

− 1
4〈ε4〉 = lim

N→∞
1

N
(A4 − 1

2A
2
2) (22)

− 1
6〈ε6〉 = lim

N→∞
1

N
(A6 − A4A2 + 1

3A
3
2)

where 〈εn〉 = ∫ Q
−Q y

nρ(y) dy. Since the conserved quantitiesA2k diverge as O(Nk) for
N → ∞, let us expand the divergent part ofA2k as

A2k ≈ a2k,kN
k + a2k,k−1N

k−1 + · · · + a2k,1N. (23)

Inserting equation (23) into equation (22) and comparing theNl−1th (1 6 l 6 k) order, one
can get the following relations fork 6 3:

a2,1 = − 1
2〈ε2〉

a4,2 = 1
2a

2
2,1 a4,1 = − 1

4〈ε4〉 (24)

a6,3 = a4,2a2,1 − 1
3a

3
2,1 a6,2 = a4,1a2,1 a6,1 = − 1

6〈ε6〉 .
Similar equations can be obtained fork > 4 step by step although they become more and
more involved. Therefore, once the integral equation (19) is solved and the valueQ and
the densityρ(x) are given, one can calculate the expectation values〈εn〉 and obtain the
coefficientsa2k,l (1 6 l 6 k) recursively by (24). Finally the asymptotic expansion ofA2k

is given by (23).

4. Semiclassical quantization

In this section, we will carry out the semiclassical quantization by theEBK (Einstein–
Brillouin–Keller) formulation. In this formulation, the quantization conditions are expressed
in terms of action variables which are equal to certain areas of the phase space, and it is
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intuitively very instructive to understand how the zeros of Hill’s determinant behave as the
number of particles increases.

Since the Toda lattice is integrable, the Hamiltonian can be rewritten in terms of
the action-angle variables(Ii, θi) by the canonical transformation. Once the action-
angle variables(Ii, θi) are given, theEBK quantization is performed simply by setting
Ii = (ni + 1

2)h. The action variableIi is expressed by the canonical conjugate variables
(νi, µi) [1] as

Ii =
∮
νi(µi) dµi . (25)

The auxiliary spectraµi are defined by the eigenvalues of the reduced matrixL∗ which is
the (N − 1)×(N − 1) matrix given by removing the first row and the first column from the
matrix L (equation (3)). They are confined inN − 1 intervals satisfying|P(µ)| > 2 (they
are labelled asµ1 < µ2 < · · · < µN−1). The functionP(µ) is anN th-order polynomial
with coefficientsAi asP(µ) = ∑

i Ai(2µ)
N−i . The momentum variableνi conjugate toµi

is

νi = 2(−1)N−i ln
∣∣ 1

2

{
P(µi)+ [

P(µi)
2 − 4

]1/2}∣∣ (26)

where the positive branch of [P(µi)2 − 4]1/2 is on the upper Riemann sheet. The integral
of (25) is carried out in the bounded region where|P(µ)| > 2. One should note that the
functionP(x) is related toD(x) (equation (7)) asP(x) = i−ND(2ix).

The ground state has quantum numbersn1 = n2 = · · · = nN−1 = 0 and the quantization
conditions areIi = ∮

νi dµi = h/2 = π sinceh̄ = 1. These conditions show that each area∮
νi dµi is the same and equal toπ . The practical calculations and the behaviour ofP(µ)

will be discussed in the next section.

5. Results and discussion

Before getting into the details of the numerical calculation, let us consider qualitative features
of the large-N limit of the Hamiltonian. If the exponential potential is truncated by the
second order, i.e. eq ' 1+ q + 1

2q
2, the Toda lattice is reduced to the harmonic chain (hc).

The Hamiltonian of the harmonic chain can be expressed as a sum of harmonic oscillators
and their eigenvalues and eigenfunctions are easily obtained. The ground state energy of the
harmonic chain isEhc(N) = N+cot(π/2N) (The constant energy termN is added in order
to compare with the Toda lattice), and thus theN → ∞ limit of the energy per particle is
limN→∞ Ehc(N)/N = 1 + 2/π ' 1.6366. If we approximately calculate the ground-state
energy of the periodic Toda lattice in the first-order perturbation by employing the ground
state eigenfunction8hc of the harmonic chain, then

EToda(N) ' 〈8hc|HToda|8hc〉 = 1
2 cot(π/2N)+N exp

(
1

2N
cot(π/2N)

)
(27)

and the energy per particle approaches limN→∞〈8hc|HToda|8hc〉/N = 1/π + exp(1/π) '
1.6931. Therefore the exponential interaction is more repulsive as a whole and the exact
value of the energy per particle is expected to be 1.6366< limN→∞ EToda(N)/N < 1.6931
since higher order perturbations will reduce the expectation value〈8hc|HToda|8hc〉.

Now let us show the numerical results. Equation (19) is a homogeneous Fredholm
equation of the second kind. The kernel isK(x − y) = <ψ(1 + i(x − y)) and

<ψ(1 + iu) = −γE + u2
∞∑
n=1

1

n(n2 + u2)
(|u| < ∞) (28)
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Figure 1. Density distributionρ(x) of the imaginary part of the zeros of Hill’s determinant in
the large-N limit. x is measured in units ofQ (Q ' 2.8992) and only thex > 0 region is
shown since the functionρ(x) is symmetric.

whereγE = 0.5772. . . is Euler’s constant. Since the kernel is free from singularities, it can
be numerically solved easily. Equation (19) is a kind of eigenvalue problem, i.e. one should
search for an eigenvalueQ such that there exists an eigenfunctionρ(x). We have done
the calculation using two methods, i.e. one is to employ the Gauss–Legendre quadratures
and discretize the integral equation, and the other is to expand the kernel in terms of the
Legendre polynomials. Both of them are numerically easily performed. The eigenvalue is
Q ' 2.8992 and the eigenfunctionρ(x) is shown in figure 1. The density of the imaginary
part of the zeros tends to distribute over the outer region of the interval.

In order to carry out the exact calculation of the spectrum, we must search [N/2]
eigenvalues(A2 = −E,A4, A6, . . .) which satisfy Gutzwiller’s quantization conditions
simultaneously. We will employ the simplex method with initial values given by the
asymptotic expansion. We have calculated the exact eigenvalues up toN = 20 and they are
compared with the asymptotic expansions of (23) in table 1. SinceA2k ’s diverge as O(Nk)

for N → ∞, we listed the valuesA2k/N
k. For a fixedk the agreement certainly becomes

better for largerN , while it is better for smallerk whenN is fixed. For example, even
the sign is opposite for some cases for 2k = N whenN > 12. Except for the marginal
cases (maximumk for a fixedN ), the agreement is fairly good and one can conclude that
the asymptotic expansions are good approximations. The asymptotic value of the energy
is limN→∞ EToda(N)/N ' 1.6762, which agrees with our simple estimation mentioned
above. The asymptotic values of the conserved quantities are reached very slowly when
k becomes large. In figure 2 we show the distributions of the imaginary part of the zeros
of Hill’s determinant for 26 N 6 20. They tend to distribute over the outer region asN

increases and there seems to be an upper bound. One can also see that thej th outermost
zero moves smoothly as a function ofN . These exact calculations clearly support the
asymptotic behaviour of the zeros of Hill’s determinant shown in figure 1.
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Table 1. Conserved quantitiesA2k/N
k (1 6 k 6 10) for 2 6 N 6 20. The values in

the parentheses are those of asymptotic expansions, while those in the square brackets are
semiclassical eigenvalues.N → ∞ asymptotic values are shown at the bottom of the table.

N A2/N A4/N
2 A6/N

3 A8/N
4 A10/N

5

2 −1.5296
(−1.6762)
[−1.5152]

3 −1.6125
(−1.6762)
[−1.5916]

4 −1.6406 0.2954
(−1.6762) (0.2634)
[−1.6164] [0.2909]

5 −1.6535 0.5000
(−1.6762) (0.4917)
[−1.6272] [0.4900]

6 −1.6605 0.6442 −0.033 75
(−1.6762) (0.6439) (−0.039 60)
[−1.6328] [0.6291] [−0.033 05]

7 −1.6646 0.7500 −0.078 77
(−1.6762) (0.7526) (−0.081 15)
[−1.6361] [0.7305] [−0.076 69]

8 −1.6674 0.8305 −0.1252 0.002 744
(−1.6762) (0.8341) (−0.1265) (0.001 948)
[−1.6381] [0.8075] [−0.1213] [0.002 670]

9 −1.6692 0.8937 −0.1692 0.008 165
(−1.6762) (0.8975) (−0.1702) (0.007 889)
[−1.6395] [0.8677] [−0.1634] [0.007 898]

10 −1.6705 0.9444 −0.2095 0.015 50 −0.000 1731
(−1.6762) (0.9482) (−0.2105) (0.015 44) (−0.000 2672)
[−1.6405] [0.9160] [−0.2018] [0.014 93] [−0.000 1675]

11 −1.6715 0.9862 −0.2459 0.024 04 −0.000 6267
(−1.6762) (0.9897) (−0.2469) (0.024 07) (−0.000 6636)
[−1.6411] [0.9556] [−0.2364] [0.023 05] [−0.000 6022]

12 −1.6723 1.0211 −0.2787 0.033 20 −0.001 387
(−1.6762) (1.0243) (−0.2797) (0.033 28) (−0.001 405)
[−1.6416] [0.9886] [−0.2674] [0.031 72] [−0.001 326]

13 −1.6728 1.0506 −0.3082 0.042 59 −0.002 434
(−1.6762) (1.0536) (−0.3092) (0.042 71) (−0.002 446)
[−1.6420] [1.0166] [−0.2952] [0.040 58] [−0.002 316]

14 −1.6733 1.0759 −0.3347 0.051 97 −0.003 722
(−1.6762) (1.0787) (−0.3356) (0.052 11) (−0.003 734)
[−1.6423] [1.0405] [−0.3202] [0.049 39] [−0.003 529]

15 −1.6737 1.0979 −0.3586 0.061 16 −0.005 204
(−1.6762) (1.1004) (−0.3595) (0.061 32) (−0.005 218)
[−1.6426] [1.0613] [−0.3427] [0.058 00] [−0.004 917]

16 −1.6740 1.1171 −0.3802 0.070 06 −0.006 832
(−1.6762) (1.1194) (−0.3812) (0.070 23) (−0.006 848)
[−1.6428] [1.0795] [−0.3630] [0.066 33] [−0.006 437]

17 −1.6742 1.1341 −0.3999 0.078 62 −0.008 565
(−1.6762) (1.1362) (−0.4008) (0.078 80) (−0.008 584)
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Table 1. Continued.

N A2/N A4/N
2 A6/N

3 A8/N
4 A10/N

5

[−1.6429] [1.0956] [−0.3815] [0.074 32] [−0.008 049]

18 −1.6744 1.1492 −0.4178 0.086 80 −0.010 37
(−1.6762) (1.1511) (−0.4186) (0.086 99) (−0.010 39)
[−1.6431] [1.1098] [−0.3983] [0.081 94] [−0.009 72]

19 −1.6746 1.1627 −0.4342 0.094 61 −0.012 21
(−1.6762) (1.1645) (−0.4350) (0.094 80) (−0.012 24)
[−1.6431] [1.1225] [−0.4136] [0.089 18] [−0.011 43]

20 −1.6748 1.1749 −0.4492 0.1020 −0.014 08
(−1.6762) (1.1765) (−0.4500) (0.1022) (−0.014 11)
[−1.6433] [1.1341] [−0.4277] [0.0961] [−0.013 15]

∞ (−1.6762) (1.4048) (−0.7849) (0.3289) (−0.1103)

N A12/N
6 A14/N

7 A16/N
8 A18/N

9 A20/N
10

12 0.8938E−5
(−0.4926E−6)

[0.8589E−5]

13 0.3808E−4
(0.3451E−4)
[0.3636E−4]

14 0.9637E−4 −0.3901E−6
(0.9509E−4) (−0.1225E−5)
[0.9150E−4] [−0.3724E−6]

15 0.1890E−3 −0.1913E−5
(0.1888E−3) (−0.2240E−5)
[0.1786E−3] [−0.1814E−5]

16 0.3178E−3 −0.5449E−5 0.1475E−7
(0.3182E−3) (−0.555 88−5) (−0.5091E−7)
[0.2990E−3] [−0.5139E−5] [0.1399E−7]

17 0.4820E−3 −0.1182E−4 0.8181E−7
(0.4829E−3) (−0.1190E−4) (0.5621E−7)
[0.4519E−3] [−0.1110E−4] [0.7709E−7]

18 0.6792E−3 −0.2170E−4 0.2591E−6 −0.4921E−9
(0.6806E−3) (−0.2177E−4) (0.2491E−6) (−0.5148E−8)
[0.6347E−3] [−0.2028E−4] [0.2428E−6] [−0.4637E−9]

19 0.9062E−3 −0.3555E−4 0.6168E−6 −0.3045E−8
(0.9080E−3) (−0.3562E−4) (0.6134E−6) (−0.4880E−8)
[0.8441E−3] [−0.3306E−4] [0.5746E−6] [−0.2850E−8]

20 0.1159E−2 −0.5360E−4 0.1228E−5 −0.1062E−7 0.1468E−10
(0.1161E−2) (−0.5370E−4) (0.1228E−5) (−0.1137E−7) (−0.2855E−9)
[0.1077E−2] [−0.4970E−4] [0.1139E−5] [−0.9881E−8] [0.1375E−10]

∞ (0.3080E−1) (−0.7376E−2) (0.1545E−2) (−0.2878E−3) (0.4824E−4)

In the calculation of the semiclassical quantization, [N/2] semiclassical eigenvalues
have been found also by the simplex method and they turn out very close to the exact
values. Numerical values are also shown in table 1 in order to compare with the exact
values and the asymptotic expansions. In figure 3, we show the characteristic polynomial
P(µ). SinceP(µ) varies very rapidly, we plot the modified discriminantm(µ) introduced
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Figure 2. Distributions of the imaginary part of
the zeros of Hill’s determinant for 26 N 6 20.
Only non-negative zeros are shown since the
distribution is symmetric.

Figure 3. Modified discriminantm(µ) for N = 5, 10, 15 and 20. Sincem(µ) is an even (odd)
function forN = even (odd), only theµ > 0 region is shown. Thin lines indicate|m(µ)| = 2.
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by Fergusonet al [18], which is defined by

m(µ) =


P(µ) |P(µ)| 6 2

sign(P (µ))

{
2 + 2

π
ln

1

2

(
|P(µ)| + [

P(µ)2 − 4
]1/2

)}
|P(µ)| > 2 .

(29)

In this definition, the area|P(µ)| > 2 is equal to1
2 and one can clearly see that the zeros

of |P(µ)| accumulate in the outer region.

6. Summary

Based on Gutzwiller’s formulation of the quantum periodic Toda lattice, we have derived
an integral equation for the density distribution of the zeros of Hill’s determinant in the
large-N limit. This equation is similar to the Bethe ansatz equation for the open Toda lattice
in a box in the thermodynamic limit. However, the integral equation is of inhomogeneous
type for the open lattice, while it is a homogeneous eigenvalue equation for the periodic
lattice. Making use of the density distribution function, we have calculated the asymptotic
expansions of the conserved quantities. The exact eigenvalues are calculated by the simplex
method with initial values given by the asymptotic expansions, which turned out to be fairly
good approximations. We have also carried out the semiclassical quantization by theEBK

formulation. The semiclassical eigenvalues are also found to be very close to the exact
values.
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